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ABSTRACT 

This study incorporated two approaches to determine the thermal 

conductivity of nanocomposite material using numerical modeling and simulation.  

The first was to look at the nanocomposite material at the macro level using a 

continuum model.  The second approach broke the problem down to the atomic 

level and addressed the inter-atomic reactions using the Molecular Dynamics 

model. 

The continuum model was used to determine the optimal placement and 

alignment of the nanoparticles within a nanocomposite, to provide the largest 

enhancement of thermal conductivity for the composite.  During this process the 

effects of the particle size and spacing were investigated to determine the 

function that interparticle spacing and particle size plays in the thermal 

conductivity of the composite.   

The Molecular Dynamics model was also shown to calculate the thermal 

conductivity of nanocomposites given the thermal conductivity of the 

nanoparticles and the base material. 
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I. INTRODUCTION  

A. JUSTIFICATION 

The world of technology is becoming smaller and more powerful.  

Everywhere the hardware components are mimicking that trend; they are able to 

process more information at faster speeds.  There is, however, a price to be paid 

to achieve the goal of the high power dense hardware components.  The price is 

heat.  The power used to process and operate cause the byproduct heat.  

Increasing temperatures in the components, without a means to dissipate this 

heat, will initially cause degradation and quickly lead to failure of the components 

and system. 

The two modes of heat transfer that are typically used for cooling 

hardware are conduction and convection.  Conduction is involved by transferring 

heat from the point of heat generation, within the component, to the housing or 

external part of the component.  Convection (either forced or free) then transfers 

the heat from the outside of the component to a heat sink.  A component that is 

more power dense does not have as much material and cooling area than that of 

a less power dense component.  Less surface area may therefore reduce the 

efficiency of heat transfer.  The overall effect is that the component will not cool 

sufficiently, then overheat, and ultimately fail.   

The demand for more power dense hardware, therefore, will not be a 

viable reality without viable cooling techniques.  There are different possible 

ways to address the cooling problem.  The most general ways are to increase the 

cooling potential of either the conduction, or the convection modes.  This thesis 

focuses on a method of using nanoparticles embedded into a base material to 

create a more thermally conductive nanocomposite material.  This material will 

allow for greater heat dissipation from the point of generation to the convection 

interface.   
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The assumption, that nanoparticles such as Carbon Nanotubes (CNT) are 

much more conductive than the base material, leads to the hypothesis that the 

addition of a small amount of nanoparticles into the base material will have a 

great additive effect on the thermal conductivity of the entire composite material, 

thus increasing the heat flux through the material.   

Similar assertions have been made and demonstrated using CNT to 

improve the strength and stiffness of composite materials.  With as little as a one 

percent (by weight) of CNT dispersed into a composite material the stiffness 

increases between 36 and 42%; with a 25% increase in tensile strength. [1]  It is 

reasonable to think that similar advances could be made to composite materials 

utilizing the thermal properties of the CNT. 

Computer modeling and simulation will be used to numerically test this 

idea and to calculate quantitative results of thermal conductivity of the material.  

Previous experimental and theoretical work has been done to determine the true 

potential of nanocomposites’ thermal properties.  The studies have had mixed 

results.  Past experimental results have been considerably higher than some 

older theories would have predicted.  Analytic models have recently been offered 

to explain the conductivity of the CNT and how they react within a composite.  

These analytic models predict that the thermal conductivity of the composites can 

be much higher than the experimental data has shown. 

The experimental work may be hampered by the delicacy of the CNT.  

Although they are very strong, because of their size they tend to intertwine with 

other tubes.  It is also difficult to disperse, align, and orient the CNT throughout 

the composite to optimize their properties.  Through computer modeling and 

simulation the alignment issues are eliminated; placement of the nanotubes can 

be specified throughout the composite, the spacing and orientation within the 

composite can be dictated to accurately determine how those variations will 

affect the thermal properties of the material.  Models and simulations have limits  
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as well.  The aim is to create and implement models that accurately mimic the 

conditions in a real system and are able to provide reasonable results with 

respect to the given loads. 

B. OBJECTIVES 

There are two goals of this thesis.  First using numerical modeling and 

simulation to determine the optimal placement and alignment of the nanoparticles 

within a nanocomposite will be determined to provide the largest enhancement of 

thermal conductivity for the composite.  During this process, the effects of the 

particle size and spacing will be investigated to determine the function that 

interparticle spacing and particle size plays in the thermal conductivity of the 

composite.  Secondly a numerical model will be developed that will accurately 

calculate the thermal conductivity of nanocomposites given the thermal 

conductivity of the nanoparticles, and the base material and the volume fraction 

of the nanoparticles in the composite.  Two independent models will be 

produced; a continuum model and a molecular dynamics model, to accomplish 

the first and second goals, respectively. 
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II. BACKGROUND AND THEORY 

This chapter will offer an overview of key components of the thesis.  The 

first section will discuss nanoparticles, such as Carbon Nanotubes, and 

nanocomposites; whose properties are the primary, interest in this study.  The 

theory of conduction, the heat transfer mode of interest, will be discussed in the 

second section.  The other items covered in this chapter are the Continuum 

numerical method incorporating the Finite Element Method and lastly Molecular 

Dynamics.  The continuum method and molecular dynamics are the basis for the 

models that are used to simulate the heat transfer through the nanocomposites. 

A. THE CARBON NANOTUBE AND NANOCOMPOSITES 

1. Carbon Nanotubes 

The Carbon Nanotube (CNT) has been widely studied since the discovery 

in 1991. [2]  The material properties are believed to be amazing; yield strength 

greater than that of high strength steels; thermal conductivity comparable that of 

diamonds (the most thermally conductive material known) [3]; excellent electrical 

conductivity.  With those properties, the possible uses of the CNT seem to be 

unlimited, and new potential uses continue to propagate. 

The Nanotube, as discovered by Iijima, is a seamless cylinder of graphite 

layers.  Further work with the CNT has shown that the cylinders can be formed 

with fullerenes of carbon atoms capping the ends.  The carbon atoms form a 

benzene-type hexagonal lattice to form the shell of the tube.  They arrange in 

helical fashion around the tube’s long axis of the tubes. [2]  The tubes are 

approximately 2-10 nm in diameter (approximately 1/10,000 the diameter of a 

human hair) and have been grown as individual Single Walled Nanotube to four 

centimeters in length. [4] 
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Carbon based materials, in-plane pyrolytic graphite and diamonds, have 

the greatest measured thermal conductivity of any material at moderate 

temperatures. [5]  The graphite cylinder that makes up the CNT have the same 

hexagonal molecular structure as that of the in-plane graphite sheets, Figure 1 

illustrates this. 

 

   

   (a)      (b) 

Figure 1.   (a) A schematic diagram showing how a hexagonal sheet of graphite 
is ‘rolled’ to form a CNT.  (b) Illustrations of the two nanotube 
structures the Armchair and Zig-Zag from (a). [6] 

 
Although the nanotubes are two dimensional, the extremely small 

diameter of the tubes reduces the dimensionality of the tube to practically one 

dimension.  This graphite molecular structure and the small diameter suggest 

that CNT will have a thermal conductivity equivalent to that of diamonds. [7]  The 

carbon make up of the nanotubes and the small size facilitate the phonon-

phonon interaction in the axial direction of the CNT.  The phonon-phonon 

interaction is a major factor in the heat conductivity of a material; this will be 

discussed further in the Conduction section of this report.  Higher temperatures 

increase the phonon-phonon reaction, which is illustrated in Figure 2, as the 

thermal conductivity is a function of the temperature. 
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Figure 2.   Thermal conductivity of SWNTs as a function of temperature.  The 

inset highlights low temp behavior, the solid line is a linear fit for data 
below 25K. [8] 

 
The CNT have been studied extensively, experimentally and numerically 

using Molecular Dynamics (MD).  The results are almost as numerous as the 

studies.  One MD study reported the thermal conductivity (κ ) of a Single Walled 

Nanotube (SWNT) to be 2980 W/m-K. [9]  A second MD study of an identical 

SWNT determined that κ = 6600 W/m-K (greater than that of a diamond). [10]  

Still other studies of using experimental approaches have estimated κ  to range 

from 1750 to 5780 W/m-K for the SWNT. [8]  Although there is a large range in 

the results for the thermal conductivity, there is a commonality that the results 

indicate that the CNT do have a high κ .  The high thermal conductivity along 

with the other material properties ensures that there will be continued interest in 

developing CNT far into the future.  

2. Nanocomposites 

The nanocomposites are composite materials that typically have 

nanoparticles imbedded into their matrix; these particles are typically CNT but 

may be other nano-sized particles (for this report, the nanoparticles will be 

assumed in general).  The initial focus on the work of nanocomposites was the 

hope of increasing material strength, which proved successful.  More recently 
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there has been interest in the thermal advantages of nanocomposites.  Most of 

the work has focused on the experimental results trying to measure the thermal 

conductivity of materials or creating analytical models that will accurately predict 

the composites’ thermal conductivity.  The results of these studies indicate that 

the maximum potential for the thermal conductivity of nanocomposites has not 

yet been achieved. 

A 2001 experiment studied the thermal conductivity of oil with CNT in 

suspension.  The results showed that with a 1.0 vol% of CNT in suspension a 

1600% enhancement of the thermal conductivity was recorded.  Previous 

theories of the conduction of fluids with particles in suspension predicted only a 

10% increase in the conductivity. [11]  The results of the 2001 study are shown 

below in Figure 3. 

 

 
Figure 3.   Solid dots represent the experimental results of the normalized 

conductivity data ke/kf (ke is κ  of the composite, kf is κ  of the fluid) 
CNT in oil suspension, compared to the dotted lines representing 
theoretical models for the enhancement of thermal conductivity in 
composite.  κ  ratio is 13800. [11] 

 
The experimental results of solid nanocomposites in 2002 produced 

results of 125% thermal conductive enhancement through an epoxy composite 
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with 1 wt% CNT.  This increase translated into 0.5κ ≅ W/m K; which was 

significantly lower than the researchers hoped to get according to the ”law of 

mixtures” prediction of 10W/m K. [12] 

More recently however an analytic model has been developed to calculate 

the thermal conductivity enhancement of nanocomposites of randomly dispersed 

CNT throughout the composite. 

3

3 2

c

e m

m

f

f

κ
κ κ
κ

+
=

−
          (1) 

  eκ : Thermal conductivity of the composite 

  mκ : Thermal conductivity of the base material  

  cκ : Thermal conductivity of the CNT 

  f    : Volume fraction of CNT  

For composite that have a small volume fraction of CNT (less than f =0.02) the 

expression for the enhancement becomes: 

1
3

e c

m m

fκ κ
κ κ

= + .          (2) 

These analytic models were compared to the work done by Choi, Zhang, Yu, 

Lockwood, and Grulke in 2001. [13]  Figure 4 shows this comparison, and also 

shows the disparity between the experimental and the analytical results. 
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Figure 4.   Solid Lines represent the thermal conduction enhancement using 

equation (2) compared to the experimental results (the solid dots) 
from reference. [14] 

 

B. THE CONTINUUM METHOD (FINITE ELEMENT METHOD) 

The Finite Element Method (FEM) is a numerical technique used to 

calculate and solve problems that do not have an analytical solution or that the 

system of interest is so complex that the analytic solution is too unwieldy to be 

used as a practical tool in solving the problem.  An analytic solution provides the 

solution at an infinite number of points within the system; however, the FEM 

produces a solution at only a finite number of locations.  Increasing number of 

location, referred to as nodes, in the system creates results that more closely 

match the analytic solution.  The cost of this accuracy is the computing time 

associated with the calculations at each node. 

 The basis of the technique is to break the system up into a finite number 

of elements and then implement the boundary conditions and material properties 

for the system.  The individual elements are modeled as homogeneous 

members.  Therefore the solution across the well defined element is relatively 

easy to calculate.     

The continuum computational process has been used in recent studies of 

carbon nanotube based composites. [15]  Most of the work using the continuum 
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method and carbon nanotube based composites has been focused on the 

mechanical properties of the composites.  It can, however, be assumed that 

these same techniques can be implemented to study the thermal properties of 

these emerging materials. 

C. MOLECULAR DYNAMICS 

The molecular dynamics approach is a simple one to grasp. It is, however, 

very challenging to implement.  The premise is that the location of every body in 

a system is known at an initial time and the force on every body is also known.  

Then every future location, velocity, acceleration force and energy can be 

determined.  The key is motion.  The motion of molecules, regardless of whether 

they are solid, liquid, or gas molecules, is the important critical characteristic to 

determine all of the other values.  The challenge of implementation is 

determining the exact initial conditions.  The bodies in the system at the 

molecular level are enormous (there 6.022 x 1023 atoms per mole) and the time 

step size is incredibly small (the order of 10-15 seconds) to accurately calculate 

the atomic motion.  These two parameters combine for an astronomical amount 

of computing power and time.   

1. Classical Molecular Dynamics Method 

The classical MD method is to calculate the position and velocities of all of 

the atoms as a function of time.  The MD processor and solver are not concerned 

with the physical state (solid, liquid, gas) of the particular atom.  The atoms are 

assigned an energy value, and it is this energy value that is the basis for the 

motion of the particle.  At the atomic level, the atoms vibrate and move 

regardless of whether they are solid or fluid in nature.  They will move more or 

less depending on the energy state of the atom.  That being the case, it is a 

useful tool for modeling and simulating systems that containing multi-state and 

multi material systems.  There are no issues or difficulties with modeling and 

analyzing of the interfaces between different states or materials, because the 

analysis is done at the atomic level.  Using the atoms energy, Newton’s second 
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law, Hamiltonian equation, and a potential energy function; the position and 

velocities of the atoms are calculated for a time step.  The calculations are 

repeated for multiple time steps to calculate the solution. 

The Quantum Molecular Dynamics model is another approach to the MD 

solution process.  It is a model which is considered beneficial if the simulation 

and analysis is aimed at electron interaction between the atoms.  The quantum 

MD model and simulation tend to be much more complex and more time 

consuming than that of the classical method, and as this work is not concerned 

with the electron interaction among the atoms the Classical MD approach was 

determined to be the correct choice. [16] 

2. Newton-Hamiltonian Dynamics for the Classical Molecular 
Dynamics Simulation 

When using the Newton-Hamiltonian Dynamics for MD simulation; the 

motion of the atom (i) is caused by force (Fi) exerted by an intermolecular 

potential energy (U).  The motion of the atoms and applied forces are related 

through Newton’s second law. 

i iF mr= &&    (3) 

Here m is the mass of the atom, independent of time and position.  

Acceleration ( ir&&) is represented by the equation: 

2

2
i

i
d rr
dt

=&&     (4) 

where ri is the vector that gives the atom’s position with respect to the coordinate 

system’s origin.  For a given N-atom system, Newton’s second law represents 3N 

second order ordinary differential equation. 

A conserved quantity in isolated systems is the total energy (E).  It is 

possible to identify the total energy as the Hamiltonian (H).  H takes the form of 

Equation (5); where p is the momentum of an atom and the potential energy U 

results from the interaction between atoms. 
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21( , ) ( )
2

N N N
i

i
H r P p U r E

m
= + =∑  (5) 

Taking the derivative of Equation (5) with respect to the distance r, the explicit 

relationship between the Hamiltonian and the potential energy is 

i i

H U
r r

∂ ∂
=

∂ ∂
.    (6) 

The resultant Hamilton’s equations of motion are 

i
i

i

pH r
p m
∂

= =
∂

&     (7) 

i i
i

H p mr
r

∂
= − = −

∂
&& .   (8) 

Using Equation (6) in the Equation (8) and comparing to Newton’s Law (3) 

produces the equation. 

i
i i

H UF
r r

∂ ∂
= − = −

∂ ∂
.   (9) 

Any conservative force can be written as the negative gradient of some potential 

energy function U, and the forces from all of the other atoms determine the 

acceleration of each atom in the given system. [17] 

3. Molecular Dynamics Soft Sphere (MDSS) 

The most important aspects of a classical MD code are the applied 

potential energy functions and the finite difference method that is used.  There 

are two main categories for the pair potential energy functions as they relate to 

the classic MD codes.  They are the soft sphere potential and the hard sphere; 

the soft sphere potential represents the continuous energy function with respect 

to the inter-atomic distance, while the hard sphere potential represent a 

discontinuous energy function.  The soft sphere approach is used for this thesis. 

MDSS simulations codes tend to use a Verlet type algorithm or Predictor-

corrector algorithm as the finite difference method to numerically solve the 
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differential equations of motion.  These algorithms are usually chosen over the 

Euler or the Euler-Cromer based algorithms, because the Euler and Euler-

Cromer tend to have numerical errors that are too big to tolerate at the small 

scales that MD operates at. [16] 

The MDSS code used for this thesis was originally developed by J.M. 

Haile. [17]  His code incorporates the Lennard Jones Potential (Equation (10)), 

as the potential energy function, and uses Gear’s Predictor-Corrector Algorithm 

to calculate the motion of the atoms. 

     12 6( ) 4 [( ) ( ) ]u r
r r
σ σε= −   (10) 

Gear’s Predictor-Corrector Algorithm: 

Prediction: A fifth order Taylor series to describe the atoms position at t t+ Δ  

based on the position and the derivatives at time t. 

2 3 4 5( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
2! 3! 4! 5!
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i i i i i i i

t t t tr t t r t r t r t r t r t r tΔ Δ Δ Δ
+ Δ = + Δ + + + +& && &&&  (11) 

2 3 4( ) ( ) ( )( ) ( ) ( ) ( ) ( )
2! 3! 4!

iv v
i i i i i

t t tr t t r t r t r t r t r tΔ Δ Δ
+ Δ = + Δ + + +& & && &&&   (12) 

2 3( ) ( )( ) ( ) ( ) ( )
2! 3!

iv v
i i i i i i

t tr t t r t r t r t r tΔ Δ
+ Δ = + Δ + +&& && &&&    (13) 

2( )( ) ( ) ( )
2!

iv v
i i i i i

tr t t r t r t r t Δ
+ Δ = + Δ +&&& &&&      (14) 

( ) ( )iv iv v
i i ir t t r t r t+ Δ = + Δ       (15) 

( ) ( )v v
i ir t t r t+ Δ =        (16) 

Evaluation:  Intermolecular Force on each atom is calculated at t t+ Δ . 

^( )ij
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j i ij

u r
F r

r≠

∂
= −

∂∑        (17) 
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Correction:  Equations 18-23 offer the correction factors for the positions and 

their derivatives for the difference between the evaluated force and the predicted 

acceleration. 

2

0
( )
2!

P i
i i

r tr r α Δ Δ
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2

1
( )
2!

P i
i i

r tr r t α Δ Δ
= Δ +

&&
& &       (19) 

2 2 2

2
( ) ( ) ( )
2! 2! 2!

P
i i ir t r t r tαΔ Δ Δ Δ

= +
&& && &&

       (20) 

3 3 2

3
( ) ( ) ( )
3! 3! 2!

P
i i ir t r t r tαΔ Δ Δ Δ

= +
&&& &&& &&

       (21) 

4 ( ) 4 2

4
( ) ( ) ( )
4! 4! 2!

iv iv P
i i ir t r t r tαΔ Δ Δ Δ

= +
&&

       (22) 

5 ( ) 5 2

5
( ) ( ) ( )
5! 5! 2!

v v P
i i ir t r t r tαΔ Δ Δ Δ
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       (23) 

D. CONDUCTION 

Conduction is one of the three modes of heat transfer, the transfer of heat 

energy through contact.  This thesis is investigating the heat transfer through the 

nanocomposite material, not the heat transfer to the environment, thus 

conduction is the focus for the study. The heat transfer modeled and simulated in 

this thesis is conduction heat being transferred from one boundary of the solid 

composite material one dimensionally to another boundary at steady state 

conditions.  

Conduction is governed by Fourier’s Law of Conduction. 

" ( )T T Tq i j k
x y z

κ ∂ ∂ ∂
= − + +

∂ ∂ ∂
     (24) 
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Heat flux (q”) is a directional quantity.  When the heat flow is restricted to 

one direction, as are the continuum models of this thesis dealt, call it the x 

direction; equation (24) is simplified to 

" * Tq
x

κ Δ
= −

Δ
.     (25) 

Rewritten, to solve for the conduction coefficient, as 

"*q x
T

κ Δ
− =

Δ
.     (26) 

xΔ : Length of the direction of the heat flow  

TΔ :  Temperature difference on the boundaries  

q”:   Heat flux 

κ : Thermal Conductivity Coefficient  

It is interesting to note that Fourier’s law was not developed from first 

principles; rather it was developed by Fourier from observed phenomena.  

Therefore the law is considered phenomenological, and a generalization based 

on immense amounts of experimental data. [18]  The thermal conductivities of 

most engineering materials have been well documented and tabulated; κ values 

are historically based on the experimental data.  Objects or components that are 

made of more than one tabulated material or composites that do not have a well 

documented thermal conductivity may be described by a modified, or hybrid, κ  

value known as the effective thermal conductivity ( effκ ).  Substituting effκ  into 

equation (26)   

"*
eff

q L
T

κ− =
Δ

.    (27) 

This effκ  term will be the primary result that the numerical models will be 

calculating.   

The thermal conductivity coefficient, also known as the transport property, 

is a property of the material that varies with the state and the temperature of the 
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material.  In solids it is an additive function of two phenomena of atomic 

interaction, the electron interaction and secondly the lattice vibrations, known as 

phonons.  Solids tend to have a higher transport property than fluids, because 

the atoms are more closely packed and the electron and phonon activity more 

easily moves between atoms.  The thermal conductivity coefficient in solids is 

described as 

e lκ κ κ= +     (28) 

l p p pp
C v lκ =∑ .   (29) 

eκ  is the electron interaction component and lκ  is the lattice component.  lκ  is a 

function of C, v, and l (the heat capacity, phonon group velocity, and the mean 

free path of the phonon of mode p). [19]  In metals and materials of low electrical 

resistance the eκ  term is usually much larger and tends to dominate equation 

(28). [18]  Although, it has been shown that in CNT this is not the case as seen in 

references [7, 8] that the phonon-phonon interaction, or lκ , within CNT is the 

significant term in Equation (28).  This phonon-phonon interaction validates the 

decision to use the Classical MD simulation opposed to the Quantum MD 

simulation, which is more useful when describing the electron movement 

between atoms. 
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III. MODELING 

The nanocomposite will be modeled in two distinct manners.  First using 

the continuum method, this is a large scale view of the nanocomposite material 

and how it will transfer heat under simulated load situations.  The continuum 

method uses the Finite Element Method (FEM) to calculate the heat flux across 

the nanocomposite.  Since the heat flux is a function of the dimensions of the 

material, effκ  for the material is calculated value that will be used for comparison 

of composite materials. 

Molecular Dynamics is the second modeling technique that will be used in 

this study.  The Molecular Dynamics (MD) approach calculates the average 

thermal conductivity of the atoms by using the data of the interaction between 

atoms at the atomic level. 

A. CONTINUUM METHOD 

The continuum models were created and run using the ANSYS 10.0 

University Advanced software package for pre and post processing.  The 

composite material was modeled as a two dimensional rectangular plate, and the 

nanoparticles were represented as areas within the plate boundaries.  During the 

process of testing and analysis the shape of the nanoparticles were varied as 

rectangles, circles, and as hexagons to determine the effect on the effκ .  The 

results from these different shapes will be discussed during the results chapter 

later in this paper. 

1. Pre-processing  

a. Settings and Boundary Conditions in ANSYS 

The Thermal Preference in ANSYS was selected which activates 

the capability to solve thermal dynamic scenarios, create thermal boundaries, 

and enables the user to select elements designed to process thermal 

calculations.  The element type used for all of the models, in the continuum 
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simulations, is Thermal Mass, Solid, Quad 4node 55.  Each plate was modeled 

with a constant temperature on the left and right boundaries, 100 and 0 

respectively.  The top and bottom boundaries were modeled with a boundary 

condition of zero heat flux to indicate insulated boundaries.  These boundary 

conditions were imposed to limit the heat flow to the x, or horizontal, direction. 

b. Meshing 

The circular shaped particles were meshed using the Smart Size 

function level 5.  When the particles were modeled as the other shapes 

(rectangles and hexagon), they were meshed by dictating the element size on 

each line of the particle.  This was typically an element length of 0.01 units.  

However, on the long boundaries of the rectangular particles, an element length 

of 0.1 was used. 

The primary concern for the meshing of the remainder of the plate 

was to have specified element length on the temperature boundaries.  This 

requirement was so that the distance between the nodes was known and the 

nodal heat flux could be numerically integrated.  The decision on the size of the 

element length required a balance of accuracy, computational time, and data 

processing capability.  The initial intent was to have all the same element length 

for every element on the boundary.  This was not always practical.  It was 

desirable to have a very fine mesh in the sections of the boundary that were 

influenced by the heat flux of the nanoparticle.  The boundary sections of the 

plates that were not influenced by the higher thermal conductive particles did not 

require a fine mesh.  As the mesh size got smaller, the computational time was 

longer as was the post-processing time, without any increase in accuracy for the 

results.  The plate boundary mesh became a hybrid of element sizes.  Sections 

of the boundary, influenced by the higher conductive particles, had a finer mesh; 

the other sections had larger element sizes.  The small element length was 

modeled as 0.01 units and the larger element lengths 0.1. 
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2. Processing and Post-processing 

The following ANSYS settings were used for the solution processing of the 

steady state response to the thermal boundary conditions.  Steady State was 

chosen as the Analysis Type.  ANSYS version 10.0 allows the user to choose 

from 1-5 for the computational speed under the menu; Fast Solution Options one 

being the fastest calculation speed and five being the slowest but most accurate 

speed.  The simulations’ results for this thesis were calculated using the slowest 

most accurate computational speed setting.  Accuracy was more desirable than 

time efficiency for this study.   

The post processing and data analysis was a three step process.  The 

nodal heat flux data (q”nodal) from the ANSYS output file was exported to an Excel 

spreadsheet.  The q”nodal was extracted for the nodes identified on the right hand 

boundary.  The conservation of heat dictates that the heat flux through any x 

location on the plate should be equal to every other x location.  With that 

information the post processing time can be reduced by only evaluating the 

nodes along a vertical boundary.  This data was numerically integrated using the 

trapezoidal rule to calculate the total heat flux for the plate at the boundary.  The 

average heat flux per unit length and effκ  for the plates are derived from the total 

heat flux.  The effective thermal conductivity was normalized ( *
effκ ) with effκ  of an 

isotropic plate of the same dimensions.  The value of *
effκ  is used to compare the 

composite plates to determine the most effective heat transfer material. 

B. MOLECULAR DYNAMICS 

The Classical MD simulation process was used in this thesis to calculate 

the effκ  of the nanocomposite material.  The MATLAB software package was 

used to model and process the molecular dynamics model.  The code mdss_gp 

[20] and its associated subroutines were originally written in FORTRAN and 

created by J.M. Haile [17] as mdss (Molecular Dynamics Soft Sphere).  This 

code was developed originally to simulate Argon atoms using the Lennard-Jones 

potential as a soft sphere.  The mdss code, and the subroutine codes, were 
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reformatted and modified into MATLAB code by Young Kwon into mdss_gp to 

calculate thermal conductivity in carbon nanotubes as well as polymers and 

metallic materials; then modified further for this thesis to calculate the thermal 

conductivity of a Face Centered Cubic (FCC) solid.  The mdss_gp obtains the 

atomic positions of the FCC atomic positions.  These atomic locations were 

produced by a subroutine code create_fcc.  The create_fcc code produced a text 

file input1.txt that the mdss_gp file accessed to begin the calculations  

The nanocomposite material was again modeled to determine the thermal 

conduction coefficient, this time modeling using the molecular dynamics method.  

The material was modeled as a Face Centered Cubic (FCC) molecular 

distribution of atomic positions, using create_fcc MATLAB code. [21] 

The initial step was to calculate the heat conduction of an isotropic 

material at various energy (epsilon) and sigma values.  Sigma represents the 

distance to Zero in the Lennard-Jones Potential, and Epsilon is the depth of 

minimum in the Lennard-Jones Potential.  The actual values of epsilon, sigma, 

mass, and other properties within the MD code were arbitrary and used to model 

different materials to facilitate the simulation.  The heat conduction values of the 

isotropic materials were compared to determine which primary and secondary 

materials could be used to create suitable κ  ratios within a composite material.  

The desired κ  ratios were to be similar to those in the continuum models.  After 

the epsilon and sigma values for the primary and secondary materials were 

determined the composite material was modeled with in the MD code. 

The isotropic FCC structure was converted to a composite material by 

changing the epsilon or sigma values of selected atomic positions within the 

cubic structure to the corresponding values of a material with a higher κ  value 

(secondary material).  The remainder of the atomic positions retained the values 

for the material with a lower κ  value (primary material).  This created particle 

locations within the FCC structure that had higher thermal conductivity than the  
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rest of the solid.  The nanocomposite now modeled, effκ  for the entire composite 

FCC structure could be calculated using the MATLAB mdss_gp code.  The 

following geometries were tested:  

• MD Model 1 Two groups of nine atoms.  The two groups are 
separated in the x-direction, but fall in the same range of Y and Z 
values.  The volume fraction of the more conductive atoms to the 
lower is 7.03%.  Figure(5) 

• MD Model 2 Two groups of 18 atoms.  The two groups are 
separated in the x-direction, but fall in the same range of Y and Z 
values.  The volume fraction of the more conductive atoms to the 
lower is 14.06%. 

• MD Model 3 One section of 16 atoms that run the x-length of the 
cube. The volume fraction is 6.25%.  (Figure 6) 

• MD Model 4 One section of 32 atoms that run the x-length of the 
cube. The volume fraction is 12.5%. 

 

 
Figure 5.   FCC structure of the primary material with two groups of atoms of a 

secondary material imbedded in the solid.  The secondary material 
atoms are the red asterisk. 
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Figure 6.   FCC structure of the primary material with a continuous section of 

secondary material the entire x-dimension of the structure.  The 
atoms of the secondary material are indicated by the red asterisk. 

 
Many combinations of epsilon and sigma were tested to determine a high 

and low value for sigma, which would produce a desired κ  ratio for the 

nanocomposite ratios while epsilon was kept constant.  These test combinations 

produced isotropic materials that would be used as the primary and secondary 

materials in the models.  The heat conductivity of the isotropic FCC materials is 

listed in Table 1.  The material with the lower value of sigma corresponds to the 

lower heat conductivity.  The κ  ratio of the primary and secondary material is 

approximately 5x104 for the constant epsilon materials.  The materials with the 

higher κ  are used as the secondary materials in the MD models. 

 

 
Table 1.   The Heat Conductivity of the primary and secondary materials used in 

the MD models and the associated Sigma values. 
 

 epsilon sigma heat conductivity 
Primary Material 1 2.4 9.67E-01 
Secondary Material 1 4 4.91E+04 
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IV. RESULTS AND DISCUSSION 

A. CONTINUUM METHOD 

Equation (27) becomes Equation (30) by replacing effκ  with a normalized 

value of effκ  ( *
effκ ), and TΔ =100.  The L term varies with the plate dimensions; 

and q” is calculated with ANSYS 5.1. 

* "*
100eff

q Lκ− =     (30) 

1. Low Volume Fraction Models 

The first plates to be modeled and tested were five by five plates with 

imbedded secondary particles.  The models had very low secondary material 

volume fraction, and the particles were spaced as evenly as possible throughout 

the primary plate.  The volume fractions ranged between 0.06-1.01% with 

spacing of 10 to 20 times the diameter of the particles.  Even at a κ  ratio of 

10,000 there was very little change (less than 0.5%) in the thermal conductivity of 

the composite plate.  These results indicated that a larger volume fraction was 

needed to see any significant results.  The plate was modeled with the secondary 

material 10% of the volume of the plate.  The step from 1% to 10% volume 

fraction is a large step and was done to ensure that that there would be a 

noticeable effect on effκ , after which the volume fraction could be adjusted to 

more realistic amounts. 

2. Ten Percent Volume Fraction 

a. Eight Particles 

The increase to 10% had the desired effect.  Incorporating eight 

particles into the 5x5 plate caused a sizable increase in effκ  for the plate.  In the 

initial distribution of eight particles the particles were spaced evenly throughout 

the plate shown in Figure 7.   
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The finite element plot from this simulation showed that the nodes 

on the y-boundaries that were inline with the particles from the top and bottom 

rows (three particles in a horizontal line) had a greater heat flux than those 

associated with the particles that were farther apart.  Figure 8 is a line graph of 

the nodal heat flux values superimposed onto the FEM contour plot to illustrate 

this point.  This result led to the question of whether the boundary heat flux was 

influenced more by the percentage of the boundary that was affected by the 

higher heat flux through the more conductive particles, or was the intensity of the 

heat flux at the boundary a greater influence.  That is, is it better to align the 

same number of particles in fewer rows, or is better to spread the particles 

across the plate in the y direction.   

A new geometry was modeled to determine if the intensity was the 

greater influence.  Using the same eight particles in two horizontal lines (Figures 

9 and 10).  The continuity of the higher thermal conductivity did translate to a 

greater overall heat flux and effκ  for the entire plate, Figure 11 shows this 

comparison.  It is difficult to quantitatively compare the amount of boundary area 

affected by the higher thermal conductive particles; all of the nodes register some 

increase of heat flux over the nodes of an isotropic plate.  Comparing the nodal 

heat flux of the top and bottom corners of the Figure 7 geometry to the 

corresponding nodes in the two row geometry a simple comparison is made.  

The nodal heat flux at the upper and lower corners of the three row plate’s 

boundary are noticeably higher than the corresponding nodes in the two row 

geometry.  This shows that the heat flux is spread out over more of the boundary 

area in the three row geometry.  The thermal conductive enhancement from 

Figure 7 to Figure 10 is not very large (around 2-3% increase); however it shows 

a trend that needed to be further investigated. 
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Figure 7.   Eight particles (evenly spaced) diameter 0.6308, a 10% volume 

fraction. Dimensions of the plate are 5 in the x-direction 5 in the y-
direction. 

 

 
Figure 8.   Heat Flux in the x-direction.  Plate with eight particles evenly spaced, 

diameter 0.6308 a 10% volume fraction.  The superimposed graph 
shows the nodal values of the heat flux as it varies on the boundary. 
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Figure 9.   Heat Flux in the x-direction.  Plate with eight particles (two rows of 

four), diameter 0.6308 a 10% volume fraction.  The superimposed 
graph shows the nodal values of the heat flux as it varies on the 
boundary. 

 

 
Figure 10.   Eight particles (2 rows of 4) diameter 0.6308, a 10% volume fraction. 

Dimensions of the plate are 5 in the x-direction 5 in the y-direction. 
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Figure 11.   The *

effκ  of a plate with 10% volume fraction of a secondary material 
incorporating Eight particles of diameter 0.6308. 

 

b. Rectangular Strips 

The next set of simulations show that a larger number of particle 

lines of the secondary material, translates into a larger overall effκ  for the plate.  

Three geometries were compared.  Using the 10% volume fraction, the 5x5 plate 

had horizontal rectangular strips of secondary material running the full width of 

the plate.  The three plates' geometries are:  

• A single strip, 0.5 high;  

• Five strips, 0.1 high;  

• Ten strips, 0.05 high.   
Figures 12 and 13 show the results of the three geometries.  The 

data from the κ  ratio=10,000 is broken out into a separate graph so that the 

values in Figure 12 would be discernible with each other.  Table 2 list the data for 

Figures 12 and 13. 
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Figure 12.   The *
effκ  of a plate with a constant 10% volume fraction, in all three 

cases, of a secondary material in rectangular strips. 
 

 
Figure 13.   The *

effκ  of a plate with a constant 10% volume fraction, in all three 
cases, of a secondary material in rectangular strips κ  ratio=10,000. 
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K*(eff) values (10%) strips 

number of strips 
K ratio 
=1 

K ratio 
=2 

K ratio 
=5 

K ratio 
=10 

K ratio 
=10000 

1 1 1.102 1.408 1.918 1020.898 
5 1 1.11 1.44 1.99 1100.89 

10 1 1.12 1.48 2.08 1200.88 
 

Table 2.   The *
effκ of a plate with a constant 10% volume fraction, in all three 

cases, of a secondary material in rectangular strips. 
 

c. Ten Percent Discussion 

The results of these early models indicate that effκ is related to the 

number of horizontal rows of secondary material.  More rows of a higher 

conductive material in the plate created a greater overall heat flux and *
effκ .  The 

size of the particles needs to be reduced to maintain a constant volume fraction 

and to produce rows of continuity of the secondary material.   

3. The 4.7 Percent Volume Fraction Models 

Two questions arise from the rectangular strip results.  The first is whether 

the reduction of the particle size truly increases the thermal conductivity of the 

composite.  The other question is, ‘what is the importance of the continuity of the 

secondary material?’.  The rectangular geometry for the particles appears to be 

the ideal case; there is uniform cross section and no breaks in the continuity of 

the higher thermal conductive material.  What is the result when continuity is 

broken?  With these questions the research branched off in two directions.  A set 

of testing to determine what the effects of discontinuity are in the nanocomposite.  

More specifically how much space between particles can exist and still have a 

significant increase in *
effκ  of the plate.  The other separate test looks to verify 

that smaller particles of a constant volume fraction do actually mean a higher *
effκ  

for the nanocomposite. 
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To maintain the constant volume fraction of 4.7% in these models, the 

dimensions of the composite plate were varied to compensate for the change of 

the particle size and the addition of spacing between particles. 

a. Particle Size Comparisons 

This set of comparisons varied the size of the particles and kept the 

volume fraction and the spacing between particles constant (4.7% and 0.0 

respectively), which had the effect of increasing the number of horizontal rows in 

the composite plate.  This tested the idea that the smaller the size of the particle, 

the greater the effective thermal conductivity of the plate would be.  The models 

for this comparison went through three main evolutions.   

(1)  Circular Particles Touching Each Boundary with a Single 

Point.  The first evolution modeled the particles as circles, as had been done 

earlier in the study, and the full circles would be connected in horizontal rows 

connecting one temperature boundary to the other. (Figure 14)  The following 

geometries were used to compare the effect of the particle size on the thermal 

conductivity of the plate. 

• One row of 5 particles at a normalized diameter of 1 

• One row of 7 particles at a normalized diameter of 0.6 

• Two rows of 14 particles at a normalized diameter of 0.4 

• Three rows of 25 particles at a normalized diameter of 0.2 

• Three rows of 50 particles at a normalized diameter of 0.1 
The comparison results of these models were inconsistent 

with the results of the rectangular strip models.  The results shown graphically in 

Figure (15) revealed that there was an upper limit to the enhancement of *
effκ .  

The limit to the enhancement, even at κ  ratios of 10,000, was no more than 

50%,.  Comparing this to the rectangular models where the thermal conductivity 

continued to increase at the κ  ratio increased, to the order of 100,000%.  There 

appeared to be a problem with this representation of the nanocomposite.   
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(2)  Identifying the Error at the Boundary.  The low results 

were believed to be caused by the particles’ single point on the boundaries.  The 

issue was that the plate boundaries contained a point of singularity where the 

particle intersected the boundary.  The point where the higher thermal 

conductivity of the particle met the boundary that was everywhere else the lower 

conductivity of the plate, meant that the mesh size on the boundary was 

insufficient to properly account for this vast change in the nodal heat flux.   

The first model to test this theory used the 7 particle 

geometry from the size testing.  One of the particles was split in half, so that a 

semicircle with the diameter face was on the left and right plate boundaries 

(Figure 16).  The effective thermal conductivity of this geometry had an increase 

of approximately 200 times that of an isotropic plate at the 10,000 κ  ratio, 

compared to the 50% increase from the previous geometry.  This result 

supported the idea that the comparison results were influenced by the point of 

singularity. 

The next step in identifying the problem, with the circular 

particles with a point at the boundary, was to develop a hybrid geometry.  This 

model was designed to test the methodology of the work that had been 

accomplished so far.  A plate with six and a half particles where the left boundary 

had a particle touching at a point and the opposite boundary had the semicircle 

diameter.  The volume fraction for the plate was maintained at 4.7%.  The heat 

flux for both boundaries was calculated showing a significant difference at the 

two boundaries.  At the test κ  ratio of 100; the boundary with the half particle 

had an approximately 125% larger heat flux than did the other temperature 

boundary.  This showed that there was no conservation of heat flux in this 

geometry, indicating that the model was totally unacceptable for modeling.  

Similar test, where the geometry was identical on both boundaries (either a 

single point or a semicircle diameter), did show a conservation of heat flux.  The 

hybrid geometry also showed that the boundaries that included points of 

singularity were not adequate representations of the nanocomposite. 
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The conservation of heat flux on symmetric boundaries, and 

the results from the model with the diameters on the boundaries provided 

evidence that the circular particle and the testing methodology were valid for the 

study.  Another validation on the process was done, before further testing was 

accomplished.  A plate with a single particle, touching each boundary at a single 

point was modeled.  All of the nodes were identified at the boundaries and 19 

interior x values.  This was done to calculate the heat flux throughout the interior 

of the plate, and ensure that there was conservation of heat flux throughout the 

interior of the plate.  The results showed that heat flux throughout the interior x-

values were consistent and at the boundaries the heat flux decreased 

significantly.  This indicated that the process was valid; and continued to validate 

that the singularity on the boundary was a critical issue.   

 

 
Figure 14.   150 connected circular particles. 
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Figure 15.   The *
effκ  of a plate with 4.7% volume fraction of a secondary material; 

particles of varying number and diameter; circular particles with 
points of singularity at the boundaries.  Shows that there is an upper 
limit to the *

effκ  which is inconsistent with the earlier models using the 
rectangular strips. 

 
(3)  Circular Particles Touching Each Boundary with a 

Diameter.  The second evolution of the size comparison test used the circular 

particles of the same size and number that were used for the first evolution, but 

modified so that a diameter of a circle was on each temperature boundary.  

Figure (16) is an example of these composite geometries.  This modification 

maintained the particles as circles while eliminating the point of singularity at the 

boundary.  Simulations using this geometry revealed that it also was inconsistent 

with the results from the ideal case of the rectangular strips.  There was not an 

upper limit to the *
effκ  for these geometries, but there was also not any noticeable 

difference in the *
effκ as the particle size changed (Figure (17)). 
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The singularity point was also believed to be the issue in this 

geometry, not at the plate boundaries, but at the point where a particle was in 

contact with other particles.  The mesh near the inter-particle contact point was 

not able to represent the heat flux in those areas, and thus did not represent the 

total heat flux of the composite plate.  The limitation of the mesh effectiveness 

was most likely caused by the confined space between the particles and the 

large difference in the thermal conductivity at the single contact point and the 

lower heat conductivity of the surrounding material.   

 
Figure 16.   7 connected circular particles with half particles at the boundaries. 
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Figure 17.   The *
effκ  of a plate with 4.7% volume fraction of the secondary 

material; particles of varying number and size; circle diameter on the 
boundaries.  Does not show any noticeable variation with the change 
of the particle size.  Inconsistent with the rectangular strip models. 

 
(4)  Hexagon Shaped Particles.  The difference between the 

geometries of the particles and the rectangular strips is that the strips have a 

constant cross section of material at every point of the “particle” row.  The rows 

of circular particles only have a singular line of points that are uninterrupted 

through the length of the plate.  To address this issue of single point continuity 

the shape of the particles were changed to allow more continuity, and more 

contact area between neighboring particles.  The shape picked for the final 

evolution of the size comparison test was the hexagon.  It maintains a significant 

contact area with the neighboring particles and also has breaks in continuity 

which represent it more as a particle than the rectangular strips.  One face of 

each particle was in contact with a neighboring particle’s face and the opposite 

face was in contact with a second particle or the plate boundary as illustrated in 

Figure 18.   
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The size of the hexagon particles was varied for comparison 

similarly to the way the circular particles sizes were varied.  The *
effκ  of the 

hexagon imbedded plates increased as the κ  ratio increased, also similar to the 

rectangular strips the *
effκ  increased as the particle size got smaller translating 

into more rows of continuity of the secondary material.  The comparison between 

the hexagon particles and rectangular strips is shown in Figure 19, which plots 
*
effκ  of the plate with respect to the normalized particle size.  The particle size is 

normalized with regards to the largest particle of that shape in the study.  It 

shows that *
effκ of the rectangular strips is the most conductive.  This was the 

previous assumption, because of the rectangle had no discontinuity of the 

secondary material.  The rectangular strips geometries do have 0.3% more 

secondary material, but this alone will not account for the dramatic increase 

in *
effκ .  The hexagon shaped particles follow the same trend as the rectangular 

strip models, which is the smaller the particle the greater *
effκ  of the plate.   

 

 
Figure 18.   Six Connected hexagonal particles. 
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K*(eff) Comparison of different shaped particles in a composite plate
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Figure 19.   Comparison between particle shapes: rectangle, hexagon and both 

geometries are at an approximate volume fraction of 4.7%.  κ  
ratio=10,000. 

 

b. Particle Spacing Comparison 

(1)  Modeling and Setup.  The second direction of modeling 

and simulation was to determine the critical spacing of the secondary particles in 

regards to the effect on *
effκ  of the plate.  Staying with the 4.7% volume fraction of 

the secondary material the initial plate of zero spacing was modeled as a five by 

five plate with three rows of 50 circular particles, with a diameter of 0.05 units.  

The dimensions of the plate were altered to maintain the volume fraction as 

space between the particles increased.  The length was function of the particle 

size and spacing; and the height a function of the length and the volume fraction.  

The values of the particle spacing were normalized with regard to the radius of 

the particles: 0.2; 0.4; 1; 1.5; 2; 4; and 8; the κ  ratios: 10, 100, 1,000, and 

10,000 were used in the simulations. 

(2)  Shape Error Check.  The erroneous results associated 

with the circular particles were not realized at the time the spacing models were 

created and tested.  Had those results been known the particles would likely  
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have been shaped as hexagons.  As it turns out the only geometry, in the 

spacing comparison, where the circular particles seem to cause inaccuracies is 

the geometries of ‘zero’ spacing. 

The original particle shape and arrangement for the zero 

spacing geometry produced inaccurate results as determined in the spacing 

comparisons as seen in the size comparison using the circular particles.  

Therefore the results from the hexagon shaped particles (3 rows of 50) were 

used in place of the erroneous circular geometry for zero spacing.  The next 

question to address was; ‘Do all of the other circular spacing geometries have 

critical flaws in the calculations?’.  The assumption was that circular particles that 

were spaced apart did not produce bad results, because there were no points of 

singularity at either the boundaries or between the particles.  A check was 

required, however, before the results could be trusted. 

Two geometries of spaced hexagon particles were created; 

each with three rows of 50 hexagonal particles.  They were spaced at the 

normalized distances of 0.5 and 2; and run at the κ  ratio of 100.  The κ  ratio 

was picked because in the spacing models higher ratios did not noticeably 

increase *
effκ  of the plate, but there was a large difference from the lower ratios to 

a ratio of 100.  The effective thermal conductivity of the plates with the spaced 

hexagonal particles was almost identical to that of the circular particles of the 

same normalized spacing and κ  ratio.  The hexagon particles actually produced 

a *
effκ  slightly less (although almost negligible) than that of circular particles.  This 

can be explained because circles have a much larger perimeter to area ratio than 

do hexagons.  This means that a larger area is facing each particle for the circle 

than the hexagon, allowing more continuity for the heat to transfer.  These results 

gave validity that the previously spacing comparison models with circular 

particles were acceptable and gave accurate results. 
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(3)  Spacing Results and Discussions.  Figure 20 indicates 

the *
effκ  values as a function of the normalized spacing value, the associated data 

in Table 3.  The greatest thermal conductivity for the plate occurred when the 

particles were touching or percolated.  The normalized thermal conductivity of the 

composite became less as the spacing between particles increased.  Figure 21 

shows a different analysis of the data; what percentage *
effκ  of a plate, with 

secondary particles, is greater than that of an isotropic plate as the spacing 

between particles increases.  This graph is useful, showing what percentage of 

thermal conductivity enhancement may be expected using the various plate 

geometries.  For example if certain percent increase is needed, Figure 21 can be 

used to determine the thermal coefficient of the secondary particle and the 

tolerance of the particle spacing needed to obtain the desired effect.  

 

 
Figure 20.   The *

effκ  of a plate as the spacing between particles is increased. 
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Figure 21.   Percentage that *

effκ  of a plate with secondary material particles is 
greater than an isotropic plate as particles are spaced apart. 

 
Normalized K(eff) and Normalized Spacing values (4.7%) 
Spacing (D(spacing)/r(radius)) K=1 k=10 k=100 k=1000 k=10000 

0 1 1.395 5.277 44.093 432.254 
0.2 1 1.174 1.291 1.309 1.311 
0.4 1 1.140 1.149 1.215 1.216 
1 1 1.111 1.145 1.150 1.150 

1.5 1 1.098 1.125 1.128 1.128 
2 1 1.094 1.094 1.118 1.122 
4 1 1.084 1.103 1.105 1.105 
8 1 1.077 1.093 1.095 1.095 

 
Table 3.   The Normalized effκ  as the distance between particles is increased.  

The particles are circular with the exception of the zero distance those 
particles are hexagons. 

 

B. MOLECULAR DYNAMICS RESULTS 

Each of the four MD models, described as MD Models 1-4 in Chapter II.B, 

were run with the primary and secondary materials having a constant epsilon 

value. 

The effective x-direction heat conductivity for the constant Epsilon 

calculations is listed in Table 4.  Comparing these results to the isotropic 
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materials, in Figure 22, shows that the addition of the secondary material 

increases the effκ  of the composite material and that the effκ of the composite is 

bound by the κ  values of the primary and secondary materials.  This gives 

evidence to the validity of the process.   

 

Geometry 
Normalized Effective Thermal 
Conductivity in the x-direction 

Isotropic primary material 1.00 
MD Model 3 Continuous section of secondary material
(6.02% volume fraction)  27.35 
MD Model 4 Continuous section of secondary material 
(12.04% volume fraction)  35.25 
MD Model 1 2 separate sections of secondary material
(7.03% volume fraction)  51.79 
MD Model 2 2 separate sections of secondary material
(14.06% volume fraction)  63.82 
Isotropic secondary material 50800.08 
 

Table 4.   Heat conductivity of the MD Models with the Constant Epsilon 
Value=1. 

 

Normalized Effective Heat Conduction of the MD Models w/ 
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Figure 22.   The effκ  of the MD Models with the Constant Epsilon Materials. 
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The results form the composite materials only are broken out in Figure 23 

for an easier comparison.  Figure 23 shows that the models with two separate 

sections of secondary materials have a higher effκ  than do the models with the 

continuous section of secondary material running the length of the solid.  Figure 

23 also illustrates that when the respective sections of secondary material are 

increased and the volume fraction is increased, the effκ  of the composite material 

also increases which is expected.  The unexpected result is that Models 3 and 4  

with the continuous section of secondary material have a lower heat conductivity 

than do Model 1 and 2 with the separated sections;  even though the volume 

fraction of Model 4 is greater than that of Model 1. 

 
Normalized Effective Heat Conductivity of the Composite MD Models 
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Figure 23.   Normalized effκ  of the Nanocomposite MD Models which have 

Constant Epsilon Valued Materials as the Primary and Secondary 
Material. 
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V. CONCLUSIONS 

A. CONTINUUM MODEL 

The continuum model of the nanocomposite plate showed that the 

effective thermal conductivity of a material can be significantly improved by the 

addition of more conductive nanoparticles.  This property of the nanocomposite 

material may be used to assist in the thermal management of any variety of 

power dense systems (computers, radar, C4I), allowing heat to be removed from 

critical areas of the system to increase the reliability and life of the system. 

The models also showed that the advantages to using high thermal 

conductive nanoparticles embedded into a lower thermal conductive material had 

the intuitive effect of increasing the value of effκ  for the composite material.  

Another intuitive result is that a larger volume fraction of higher thermally 

conductive material results in a greater effκ  for the composite.   

The more interesting results are associated with the size of the secondary 

particles and the spacing between them.  The results showed that the continuity 

of the more conductive material, the secondary particles, was the most important 

factor to increase the effκ  of the composite material.  The less discontinuity 

between particles and the more rows of continuity both equated to higher thermal 

conductivity of the composite plate.  The importance of the continuity was shown 

by the spacing comparison.  The effκ  of the plate decreased significantly as the 

spacing between particle increased.  The particle size comparison illustrated that 

the more rows of continuity translated into the higher thermal conductivity for the 

material.  To achieve more rows with the same volume fraction the particles’ size 

needed to be smaller.  Which can be assumed that the smaller particles 

imbedded into the material will produce a greater effective thermal conductivity 

for the material. 
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This conclusion is important for the future design work in the nano-

composites.  It shows that if the alignment and orientation of the nanoparticles 

can be more accurately placed within the composite matrix, the volume fraction 

may be decreased which will decrease the costs associated with manufacturing 

the nanoparticles.  

The spacing results supplied information about the need for continuity in 

the secondary material to facilitate a higher effκ .  The greater continuity, or rather 

the less discontinuity, of the secondary material results in a greater effective 

thermal conductivity for the composite.  The other side of the spacing results is 

that although the effκ  drops off almost immediately with a slight spacing between 

particles, there is still significant thermal benefit with the addition of the particles 

within the composite.  This information may also be useful to material designers.  

A cost analysis can be accomplished using this data to determine how detailed 

the alignment of particles needs to be in order to meet the thermal requirements 

of a material.  The less stringent the spacing requirement is for the particles, it 

can be assumed that the cost of manufacturing would decrease. 

The other important analysis and results that came from the size 

comparisons were the modeling limitations using FEM software.  The circular 

shapes of the particles initially were thought to be good representations of the 

nanoparticles.  It appears that the circular particles were better heat conductors 

than the hexagonal particles.  However, the critical flaw in the analysis of the 

circular particles was the point of singularity.   

These results may also help to explain the difficulties associated with 

experimentally testing the thermal conductivity of nanocomposites.  These 

simulations indicate that continuity of the particles is very important for the 

thermal conductivity of the nanocomposites.  Because of their small size, studies 

have indicated that the alignment of the CNT and nanoparticles is difficult.  If the 

particles are not aligned or there is discontinuity between the particles it would 

significantly impact the results of the experimental study. 
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B  FUTURE WORK WITH THE CONTINUUM MODEL 

This thesis illustrated that the continuum model is a valid tool for the 

determination of thermal conduction through nano-composites.  Further study 

may include more accurate representation of the CNT structure.  This study 

looked to represent the CNT as circular and hexagonal particles.  Modeling the 

particles as cylinders or capsule shaped particles may be more informative to the 

true thermal potential of the CNT-based nanocomposite.  The capsule shape has 

a relatively long axial direction.  However, with the addition of the fullerenes at 

the ends of the tube there is the potential for discontinuities between the CNT, 

even if they were touching and aligned in the same direction.  This capsule 

shape would be a hybrid of the rectangular strips and circular particles. 

With the particles modeled more accurately, the orientation of the particles 

may be varied to determine if how the thermal conductivity of the composite may 

be affected by heat flux through the axial direction of the CNT opposed to the 

radial direction.  This may be beneficial in determining the optimal orientation and 

placement of the CNT throughout the composite material to promote thermal 

conductivity. 

A material designer could use the information: optimized orientation and 

placement of CNT and values of κ  for the CNT and the base materials, to 

determine the value of effκ  for the composite material.  The calculated effκ  can be 

used to reevaluate the design with regards to the requirements for the material. 

C. MOLECULAR DYNAMICS CONCLUSION 

The results of the Molecular Dynamics models were consistent with the 

idea that increasing the volume fraction of the secondary material caused an 

increase in the effective thermal conductivity for similar geometry composite 

material.  The MD calculations also showed that the thermal conductivity of all of 

the composite materials fell with in the bounds of the homogenous primary and 

homogenous secondary materials.  Both of these coincide with the results of the 

Continuum Method. 
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The results of the Molecular Dynamics calculations, however, do not 

correspond with all of the conclusions of the continuum calculations.  The 

Continuum Method results show the importance of the continuity of the 

secondary material through the composite; the MD results actually show that the 

opposite is true the composites where there is discontinuity had the higher 

thermal conductivity.  It is believed however that the continuum method offers 

results that are more realistic and that the results from the MD calculations are 

caused by limitations in the input models.  Possible modifications to the model 

that may improve the MD results are discussed in the next section. 

D. MOLECULAR DYNAMICS FUTURE WORK 

The initial follow-on study would be to determine the if modifications to the 

MD model would create results that would confirm the Continuum method 

results.  An area to look at for improvement would be in the number of atoms 

used for the calculations.  The total number of atoms in the materials that were 

modeled and simulated was relatively small (256).  Increasing the number of 

atoms would provide a larger amount of data for correlation and calculation. 

Other areas of potential improvement in the model would be to decrease 

the y-dimension while increasing the x and z dimensions.  This would have the 

effect of creating a thin plate, instead of the cube that was modeled in this study.  

The dimensional modification would provide more flexibility in the position of the 

secondary atoms.  The thin plate model would also be a closer comparison to the 

continuum model plate.   

The MD models may, in the further studies, better represent the 

nanoparticles with in the FCC structure  Similar to the Continuum Model, the MD 

work may be improved by incorporating more accurate representations of the 

Carbon Nanotubes within the nanocomposite.  The molecular dynamics model of 

a SWNT has previously been developed and the FCC structure was used in this 

thesis.  The challenge would be to incorporate the SWNT model with into the 

FCC model.  Testing and research would be needed to determine the acceptable 

lattice distances of the FCC structure adjacent to the SWNT and at locations far 
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from it, and the associated Sigma and Epsilon values for the SWNT, the FCC 

structure, and the atomic positions of interaction between the FCC and the 

SWNT. 

The difficulty is in the computational time required for these calculations.  

It is non-linear relationships between the number of atomic positions and the 

computational time required for MD calculations.  More atoms and a greater the 

degree of complexity in the system equate to a much greater need for computing 

power. 
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